A theorem obtained and originally formulated by K. Weierstrass in 1860 as a preparation lemma, used in the proofs of the existence and analytic nature of the implicit function of a complex variable defined by an equation $ f( z, w) = 0 $ whose left-hand side is a holomorphic function of two complex variables. Mathematische Werke von Karl Weierstrass (in German). $=\int\frac{a-b\cos x}{a^2-b^2+b^2-b^2\cos^2 x}dx=\int\frac{a-b\cos x}{(a^2-b^2)+b^2(1-\cos^2 x)}dx$. As t goes from 1 to0, the point follows the part of the circle in the fourth quadrant from (0,1) to(1,0). {\textstyle \csc x-\cot x=\tan {\tfrac {x}{2}}\colon }. x 1 How to make square root symbol on chromebook | Math Theorems It only takes a minute to sign up. "1.4.6. Weierstrass Substitution - Page 2 Kluwer. Why do we multiply numerator and denominator by $\sin px$ for evaluating $\int \frac{\cos ax+\cos bx}{1-2\cos cx}dx$? G are well known as Weierstrass's inequality [1] or Weierstrass's Bernoulli's inequality [3]. , , Irreducible cubics containing singular points can be affinely transformed However, the Bolzano-Weierstrass Theorem (Calculus Deconstructed, Prop. Karl Weierstrass, in full Karl Theodor Wilhelm Weierstrass, (born Oct. 31, 1815, Ostenfelde, Bavaria [Germany]died Feb. 19, 1897, Berlin), German mathematician, one of the founders of the modern theory of functions. \theta = 2 \arctan\left(t\right) \implies tan $$\cos E=\frac{\cos\nu+e}{1+e\cos\nu}$$ The tangent half-angle substitution in integral calculus, Learn how and when to remove this template message, https://en.wikipedia.org/w/index.php?title=Tangent_half-angle_formula&oldid=1119422059, This page was last edited on 1 November 2022, at 14:09. Published by at 29, 2022. 382-383), this is undoubtably the world's sneakiest substitution. \begin{align} x These identities can be useful in calculus for converting rational functions in sine and cosine to functions of t in order to find their antiderivatives. An irreducibe cubic with a flex can be affinely transformed into a Weierstrass equation: Y 2 + a 1 X Y + a 3 Y = X 3 + a 2 X 2 + a 4 X + a 6. $$ In integral calculus, the tangent half-angle substitution is a change of variables used for evaluating integrals, which converts a rational function of trigonometric functions of x {\\textstyle x} into an ordinary rational function of t {\\textstyle t} by setting t = tan x 2 {\\textstyle t=\\tan {\\tfrac {x}{2}}} . Proof Technique. This is the content of the Weierstrass theorem on the uniform . Using the above formulas along with the double angle formulas, we obtain, sinx=2sin(x2)cos(x2)=2t1+t211+t2=2t1+t2. Instead of + and , we have only one , at both ends of the real line. {\textstyle t=\tanh {\tfrac {x}{2}}} Elliptic functions with critical orbits approaching infinity cos cot x b rev2023.3.3.43278. Brooks/Cole. My code is GPL licensed, can I issue a license to have my code be distributed in a specific MIT licensed project? The complete edition of Bolzano's works (Bernard-Bolzano-Gesamtausgabe) was founded by Jan Berg and Eduard Winter together with the publisher Gnther Holzboog, and it started in 1969.Since then 99 volumes have already appeared, and about 37 more are forthcoming. p.431. (d) Use what you have proven to evaluate R e 1 lnxdx. {\textstyle u=\csc x-\cot x,} {\textstyle \cos ^{2}{\tfrac {x}{2}},} t Mayer & Mller. 8999. $$\int\frac{dx}{a+b\cos x}=\frac1a\int\frac{dx}{1+\frac ba\cos x}=\frac1a\int\frac{d\nu}{1+\left|\frac ba\right|\cos\nu}$$ &=\int{\frac{2du}{(1+u)^2}} \\ Tangent half-angle substitution - Wikipedia {\displaystyle \operatorname {artanh} } Finding $\\int \\frac{dx}{a+b \\cos x}$ without Weierstrass substitution. These imply that the half-angle tangent is necessarily rational. For an even and $2\pi$ periodic function, why does $\int_{0}^{2\pi}f(x)dx = 2\int_{0}^{\pi}f(x)dx $. International Symposium on History of Machines and Mechanisms. \frac{1}{a + b \cos x} &= \frac{1}{a \left (\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} \right ) + b \left (\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} \right )}\\ {\displaystyle \cos 2\alpha =\cos ^{2}\alpha -\sin ^{2}\alpha =1-2\sin ^{2}\alpha =2\cos ^{2}\alpha -1} File usage on other wikis. Site design / logo 2023 Stack Exchange Inc; user contributions licensed under CC BY-SA. NCERT Solutions Class 12 Business Studies, NCERT Solutions Class 12 Accountancy Part 1, NCERT Solutions Class 12 Accountancy Part 2, NCERT Solutions Class 11 Business Studies, NCERT Solutions for Class 10 Social Science, NCERT Solutions for Class 10 Maths Chapter 1, NCERT Solutions for Class 10 Maths Chapter 2, NCERT Solutions for Class 10 Maths Chapter 3, NCERT Solutions for Class 10 Maths Chapter 4, NCERT Solutions for Class 10 Maths Chapter 5, NCERT Solutions for Class 10 Maths Chapter 6, NCERT Solutions for Class 10 Maths Chapter 7, NCERT Solutions for Class 10 Maths Chapter 8, NCERT Solutions for Class 10 Maths Chapter 9, NCERT Solutions for Class 10 Maths Chapter 10, NCERT Solutions for Class 10 Maths Chapter 11, NCERT Solutions for Class 10 Maths Chapter 12, NCERT Solutions for Class 10 Maths Chapter 13, NCERT Solutions for Class 10 Maths Chapter 14, NCERT Solutions for Class 10 Maths Chapter 15, NCERT Solutions for Class 10 Science Chapter 1, NCERT Solutions for Class 10 Science Chapter 2, NCERT Solutions for Class 10 Science Chapter 3, NCERT Solutions for Class 10 Science Chapter 4, NCERT Solutions for Class 10 Science Chapter 5, NCERT Solutions for Class 10 Science Chapter 6, NCERT Solutions for Class 10 Science Chapter 7, NCERT Solutions for Class 10 Science Chapter 8, NCERT Solutions for Class 10 Science Chapter 9, NCERT Solutions for Class 10 Science Chapter 10, NCERT Solutions for Class 10 Science Chapter 11, NCERT Solutions for Class 10 Science Chapter 12, NCERT Solutions for Class 10 Science Chapter 13, NCERT Solutions for Class 10 Science Chapter 14, NCERT Solutions for Class 10 Science Chapter 15, NCERT Solutions for Class 10 Science Chapter 16, NCERT Solutions For Class 9 Social Science, NCERT Solutions For Class 9 Maths Chapter 1, NCERT Solutions For Class 9 Maths Chapter 2, NCERT Solutions For Class 9 Maths Chapter 3, NCERT Solutions For Class 9 Maths Chapter 4, NCERT Solutions For Class 9 Maths Chapter 5, NCERT Solutions For Class 9 Maths Chapter 6, NCERT Solutions For Class 9 Maths Chapter 7, NCERT Solutions For Class 9 Maths Chapter 8, NCERT Solutions For Class 9 Maths Chapter 9, NCERT Solutions For Class 9 Maths Chapter 10, NCERT Solutions For Class 9 Maths Chapter 11, NCERT Solutions For Class 9 Maths Chapter 12, NCERT Solutions For Class 9 Maths Chapter 13, NCERT Solutions For Class 9 Maths Chapter 14, NCERT Solutions For Class 9 Maths Chapter 15, NCERT Solutions for Class 9 Science Chapter 1, NCERT Solutions for Class 9 Science Chapter 2, NCERT Solutions for Class 9 Science Chapter 3, NCERT Solutions for Class 9 Science Chapter 4, NCERT Solutions for Class 9 Science Chapter 5, NCERT Solutions for Class 9 Science Chapter 6, NCERT Solutions for Class 9 Science Chapter 7, NCERT Solutions for Class 9 Science Chapter 8, NCERT Solutions for Class 9 Science Chapter 9, NCERT Solutions for Class 9 Science Chapter 10, NCERT Solutions for Class 9 Science Chapter 11, NCERT Solutions for Class 9 Science Chapter 12, NCERT Solutions for Class 9 Science Chapter 13, NCERT Solutions for Class 9 Science Chapter 14, NCERT Solutions for Class 9 Science Chapter 15, NCERT Solutions for Class 8 Social Science, NCERT Solutions for Class 7 Social Science, NCERT Solutions For Class 6 Social Science, CBSE Previous Year Question Papers Class 10, CBSE Previous Year Question Papers Class 12, Linear Equations In Two Variables Class 9 Notes, Important Questions Class 8 Maths Chapter 4 Practical Geometry, CBSE Previous Year Question Papers Class 12 Maths, CBSE Previous Year Question Papers Class 10 Maths, ICSE Previous Year Question Papers Class 10, ISC Previous Year Question Papers Class 12 Maths, JEE Main 2023 Question Papers with Answers, JEE Main 2022 Question Papers with Answers, JEE Advanced 2022 Question Paper with Answers. 5. \begin{align} f p < / M. We also know that 1 0 p(x)f (x) dx = 0. How to solve this without using the Weierstrass substitution \[ \int . How do you get out of a corner when plotting yourself into a corner. Now he could get the area of the blue region because sector $CPQ^{\prime}$ of the circle centered at $C$, at $-ae$ on the $x$-axis and radius $a$ has area $$\frac12a^2E$$ where $E$ is the eccentric anomaly and triangle $COQ^{\prime}$ has area $$\frac12ae\cdot\frac{a\sqrt{1-e^2}\sin\nu}{1+e\cos\nu}=\frac12a^2e\sin E$$ so the area of blue sector $OPQ^{\prime}$ is $$\frac12a^2(E-e\sin E)$$ . Thus, the tangent half-angle formulae give conversions between the stereographic coordinate t on the unit circle and the standard angular coordinate . One of the most important ways in which a metric is used is in approximation. We give a variant of the formulation of the theorem of Stone: Theorem 1. ( on the left hand side (and performing an appropriate variable substitution) 2.1.5Theorem (Weierstrass Preparation Theorem)Let U A V A Fn Fbe a neighbourhood of (x;0) and suppose that the holomorphic or real analytic function A . We only consider cubic equations of this form. This entry was named for Karl Theodor Wilhelm Weierstrass. In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. Why is there a voltage on my HDMI and coaxial cables? Then Kepler's first law, the law of trajectory, is By clicking Accept all cookies, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy. Introduction to the Weierstrass functions and inverses What is the purpose of this D-shaped ring at the base of the tongue on my hiking boots? 0 1 p ( x) f ( x) d x = 0. Stone Weierstrass Theorem (Example) - Math3ma $\int \frac{dx}{\sin^3{x}}$ possible with universal substitution? \\ 1 Generated on Fri Feb 9 19:52:39 2018 by, http://planetmath.org/IntegrationOfRationalFunctionOfSineAndCosine, IntegrationOfRationalFunctionOfSineAndCosine. By eliminating phi between the directly above and the initial definition of = The editors were, apart from Jan Berg and Eduard Winter, Friedrich Kambartel, Jaromir Loul, Edgar Morscher and . Our Open Days are a great way to discover more about the courses and get a feel for where you'll be studying. According to the theorem, every continuous function defined on a closed interval [a, b] can approximately be represented by a polynomial function. . \implies The \(\text{cos}\theta=\frac{BC}{AB}=\frac{1-u^2}{1+u^2}\). Hyperbolic Tangent Half-Angle Substitution, Creative Commons Attribution/Share-Alike License, https://mathworld.wolfram.com/WeierstrassSubstitution.html, https://proofwiki.org/w/index.php?title=Weierstrass_Substitution&oldid=614929, $\mathsf{Pr} \infty \mathsf{fWiki}$ $\LaTeX$ commands, Creative Commons Attribution-ShareAlike License, Weisstein, Eric W. "Weierstrass Substitution." , The differential \(dx\) is determined as follows: Any rational expression of trigonometric functions can be always reduced to integrating a rational function by making the Weierstrass substitution. Transfinity is the realm of numbers larger than every natural number: For every natural number k there are infinitely many natural numbers n > k. For a transfinite number t there is no natural number n t. We will first present the theory of Styling contours by colour and by line thickness in QGIS. If the integral is a definite integral (typically from $0$ to $\pi/2$ or some other variants of this), then we can follow the technique here to obtain the integral. $\begingroup$ The name "Weierstrass substitution" is unfortunate, since Weierstrass didn't have anything to do with it (Stewart's calculus book to the contrary notwithstanding). A related substitution appears in Weierstrasss Mathematical Works, from an 1875 lecture wherein Weierstrass credits Carl Gauss (1818) with the idea of solving an integral of the form One can play an entirely analogous game with the hyperbolic functions. Weierstrass Function. Weierstra-Substitution - Wikiwand Weierstrass substitution formulas - PlanetMath {\textstyle \int dx/(a+b\cos x)} . He gave this result when he was 70 years old. Every bounded sequence of points in R 3 has a convergent subsequence. This is the one-dimensional stereographic projection of the unit circle parametrized by angle measure onto the real line. But here is a proof without words due to Sidney Kung: \(\text{sin}\theta=\frac{AC}{AB}=\frac{2u}{1+u^2}\) and doi:10.1145/174603.174409. Note sur l'intgration de la fonction, https://archive.org/details/coursdanalysedel01hermuoft/page/320/, https://archive.org/details/anelementarytre00johngoog/page/n66, https://archive.org/details/traitdanalyse03picagoog/page/77, https://archive.org/details/courseinmathemat01gouruoft/page/236, https://archive.org/details/advancedcalculus00wils/page/21/, https://archive.org/details/treatiseonintegr01edwauoft/page/188, https://archive.org/details/ost-math-courant-differentialintegralcalculusvoli/page/n250, https://archive.org/details/elementsofcalcul00pete/page/201/, https://archive.org/details/calculus0000apos/page/264/, https://archive.org/details/calculuswithanal02edswok/page/482, https://archive.org/details/calculusofsingle00lars/page/520, https://books.google.com/books?id=rn4paEb8izYC&pg=PA435, https://books.google.com/books?id=R-1ZEAAAQBAJ&pg=PA409, "The evaluation of trigonometric integrals avoiding spurious discontinuities", "A Note on the History of Trigonometric Functions", https://en.wikipedia.org/w/index.php?title=Tangent_half-angle_substitution&oldid=1137371172, This page was last edited on 4 February 2023, at 07:50. How do I align things in the following tabular environment? &= \frac{\sec^2 \frac{x}{2}}{(a + b) + (a - b) \tan^2 \frac{x}{2}}, A Generalization of Weierstrass Inequality with Some Parameters He also derived a short elementary proof of Stone Weierstrass theorem. Weierstrass - an overview | ScienceDirect Topics , If the \(\mathrm{char} K \ne 2\), then completing the square Differentiation: Derivative of a real function. {\textstyle t=\tan {\tfrac {x}{2}},} Other sources refer to them merely as the half-angle formulas or half-angle formulae . \(j = c_4^3 / \Delta\) for \(\Delta \ne 0\). x t derivatives are zero). Weierstrass Trig Substitution Proof - Mathematics Stack Exchange The method is known as the Weierstrass substitution. brian kim, cpa clearvalue tax net worth . Later authors, citing Stewart, have sometimes referred to this as the Weierstrass substitution, for instance: Jeffrey, David J.; Rich, Albert D. (1994). [4], The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. 3. Click or tap a problem to see the solution. Mathematica GuideBook for Symbolics. . Using at How to type special characters on your Chromebook To enter a special unicode character using your Chromebook, type Ctrl + Shift + U. An affine transformation takes it to its Weierstrass form: If \(\mathrm{char} K \ne 2\) then we can further transform this to, \[Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6\]. All new items; Books; Journal articles; Manuscripts; Topics. {\textstyle t=\tan {\tfrac {x}{2}}} and then make the substitution of $t = \tan \frac{x}{2}$ in the integral. Weierstrass Substitution and more integration techniques on https://brilliant.org/blackpenredpen/ This link gives you a 20% off discount on their annual prem. 4. In Ceccarelli, Marco (ed.). cot 2 Instead of a closed bounded set Rp, we consider a compact space X and an algebra C ( X) of continuous real-valued functions on X. 2 Does a summoned creature play immediately after being summoned by a ready action? d The tangent half-angle substitution parametrizes the unit circle centered at (0, 0). u cot pp. 2 Retrieved 2020-04-01. 195200. Some sources call these results the tangent-of-half-angle formulae . H , differentiation rules imply. Here we shall see the proof by using Bernstein Polynomial. The orbiting body has moved up to $Q^{\prime}$ at height |Contents| Basically it takes a rational trigonometric integrand and converts it to a rational algebraic integrand via substitutions. Definition of Bernstein Polynomial: If f is a real valued function defined on [0, 1], then for n N, the nth Bernstein Polynomial of f is defined as, Proof: To prove the theorem on closed intervals [a,b], without loss of generality we can take the closed interval as [0, 1]. \(\Delta = -b_2^2 b_8 - 8b_4^3 - 27b_4^2 + 9b_2 b_4 b_6\). 2.3.8), which is an effective substitute for the Completeness Axiom, can easily be extended from sequences of numbers to sequences of points: Proposition 2.3.7 (Bolzano-Weierstrass Theorem). \( {\textstyle x=\pi } Use the universal trigonometric substitution: \[dx = d\left( {2\arctan t} \right) = \frac{{2dt}}{{1 + {t^2}}}.\], \[{\cos ^2}x = \frac{1}{{1 + {{\tan }^2}x}} = \frac{1}{{1 + {t^2}}},\;\;\;{\sin ^2}x = \frac{{{{\tan }^2}x}}{{1 + {{\tan }^2}x}} = \frac{{{t^2}}}{{1 + {t^2}}}.\], \[t = \tan \frac{x}{2},\;\; \Rightarrow x = 2\arctan t,\;\;\; dx = \frac{{2dt}}{{1 + {t^2}}}.\], \[\int {\frac{{dx}}{{1 + \sin x}}} = \int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{1 + \frac{{2t}}{{1 + {t^2}}}}}} = \int {\frac{{2dt}}{{1 + {t^2} + 2t}}} = \int {\frac{{2dt}}{{{{\left( {t + 1} \right)}^2}}}} = - \frac{2}{{t + 1}} + C = - \frac{2}{{\tan \frac{x}{2} + 1}} + C.\], \[x = \arctan t,\;\; \sin x = \frac{{2t}}{{1 + {t^2}}},\;\; dx = \frac{{2dt}}{{1 + {t^2}}},\], \[I = \int {\frac{{dx}}{{3 - 2\sin x}}} = \int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{3 - 2 \cdot \frac{{2t}}{{1 + {t^2}}}}}} = \int {\frac{{2dt}}{{3 + 3{t^2} - 4t}}} = \int {\frac{{2dt}}{{3\left( {{t^2} - \frac{4}{3}t + 1} \right)}}} = \frac{2}{3}\int {\frac{{dt}}{{{t^2} - \frac{4}{3}t + 1}}} .\], \[{t^2} - \frac{4}{3}t + 1 = {t^2} - \frac{4}{3}t + {\left( {\frac{2}{3}} \right)^2} - {\left( {\frac{2}{3}} \right)^2} + 1 = {\left( {t - \frac{2}{3}} \right)^2} - \frac{4}{9} + 1 = {\left( {t - \frac{2}{3}} \right)^2} + \frac{5}{9} = {\left( {t - \frac{2}{3}} \right)^2} + {\left( {\frac{{\sqrt 5 }}{3}} \right)^2}.\], \[I = \frac{2}{3}\int {\frac{{dt}}{{{{\left( {t - \frac{2}{3}} \right)}^2} + {{\left( {\frac{{\sqrt 5 }}{3}} \right)}^2}}}} = \frac{2}{3}\int {\frac{{du}}{{{u^2} + {{\left( {\frac{{\sqrt 5 }}{3}} \right)}^2}}}} = \frac{2}{3} \cdot \frac{1}{{\frac{{\sqrt 5 }}{3}}}\arctan \frac{u}{{\frac{{\sqrt 5 }}{3}}} + C = \frac{2}{{\sqrt 5 }}\arctan \frac{{3\left( {t - \frac{2}{3}} \right)}}{{\sqrt 5 }} + C = \frac{2}{{\sqrt 5 }}\arctan \frac{{3t - 2}}{{\sqrt 5 }} + C = \frac{2}{{\sqrt 5 }}\arctan \left( {\frac{{3\tan \frac{x}{2} - 2}}{{\sqrt 5 }}} \right) + C.\], \[t = \tan \frac{x}{4},\;\; \Rightarrow d\left( {\frac{x}{2}} \right) = \frac{{2dt}}{{1 + {t^2}}},\;\; \Rightarrow \cos \frac{x}{2} = \frac{{1 - {t^2}}}{{1 + {t^2}}}.\], \[\int {\frac{{dx}}{{1 + \cos \frac{x}{2}}}} = \int {\frac{{d\left( {\frac{x}{2}} \right)}}{{1 + \cos \frac{x}{2}}}} = 2\int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{1 + \frac{{1 - {t^2}}}{{1 + {t^2}}}}}} = 4\int {\frac{{dt}}{{1 + \cancel{t^2} + 1 - \cancel{t^2}}}} = 2\int {dt} = 2t + C = 2\tan \frac{x}{4} + C.\], \[t = \tan x,\;\; \Rightarrow x = \arctan t,\;\; \Rightarrow dx = \frac{{dt}}{{1 + {t^2}}},\;\; \Rightarrow \cos 2x = \frac{{1 - {t^2}}}{{1 + {t^2}}},\], \[\int {\frac{{dx}}{{1 + \cos 2x}}} = \int {\frac{{\frac{{dt}}{{1 + {t^2}}}}}{{1 + \frac{{1 - {t^2}}}{{1 + {t^2}}}}}} = \int {\frac{{dt}}{{1 + \cancel{t^2} + 1 - \cancel{t^2}}}} = \int {\frac{{dt}}{2}} = \frac{t}{2} + C = \frac{1}{2}\tan x + C.\], \[t = \tan \frac{x}{4},\;\; \Rightarrow x = 4\arctan t,\;\; dx = \frac{{4dt}}{{1 + {t^2}}},\;\; \cos \frac{x}{2} = \frac{{1 - {t^2}}}{{1 + {t^2}}}.\], \[\int {\frac{{dx}}{{4 + 5\cos \frac{x}{2}}}} = \int {\frac{{\frac{{4dt}}{{1 + {t^2}}}}}{{4 + 5 \cdot \frac{{1 - {t^2}}}{{1 + {t^2}}}}}} = \int {\frac{{4dt}}{{4\left( {1 + {t^2}} \right) + 5\left( {1 - {t^2}} \right)}}} = 4\int {\frac{{dt}}{{4 + 4{t^2} + 5 - 5{t^2}}}} = 4\int {\frac{{dt}}{{{3^2} - {t^2}}}} = 4 \cdot \frac{1}{{2 \cdot 3}}\ln \left| {\frac{{3 + t}}{{3 - t}}} \right| + C = \frac{2}{3}\ln \left| {\frac{{3 + \tan \frac{x}{4}}}{{3 - \tan \frac{x}{4}}}} \right| + C.\], \[\int {\frac{{dx}}{{\sin x + \cos x}}} = \int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{\frac{{2t}}{{1 + {t^2}}} + \frac{{1 - {t^2}}}{{1 + {t^2}}}}}} = \int {\frac{{2dt}}{{2t + 1 - {t^2}}}} = 2\int {\frac{{dt}}{{1 - \left( {{t^2} - 2t} \right)}}} = 2\int {\frac{{dt}}{{1 - \left( {{t^2} - 2t + 1 - 1} \right)}}} = 2\int {\frac{{dt}}{{2 - {{\left( {t - 1} \right)}^2}}}} = 2\int {\frac{{d\left( {t - 1} \right)}}{{{{\left( {\sqrt 2 } \right)}^2} - {{\left( {t - 1} \right)}^2}}}} = 2 \cdot \frac{1}{{2\sqrt 2 }}\ln \left| {\frac{{\sqrt 2 + \left( {t - 1} \right)}}{{\sqrt 2 - \left( {t - 1} \right)}}} \right| + C = \frac{1}{{\sqrt 2 }}\ln \left| {\frac{{\sqrt 2 - 1 + \tan \frac{x}{2}}}{{\sqrt 2 + 1 - \tan \frac{x}{2}}}} \right| + C.\], \[t = \tan \frac{x}{2},\;\; \Rightarrow x = 2\arctan t,\;\; dx = \frac{{2dt}}{{1 + {t^2}}},\;\; \sin x = \frac{{2t}}{{1 + {t^2}}},\;\; \cos x = \frac{{1 - {t^2}}}{{1 + {t^2}}}.\], \[\int {\frac{{dx}}{{\sin x + \cos x + 1}}} = \int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{\frac{{2t}}{{1 + {t^2}}} + \frac{{1 - {t^2}}}{{1 + {t^2}}} + 1}}} = \int {\frac{{\frac{{2dt}}{{1 + {t^2}}}}}{{\frac{{2t + 1 - {t^2} + 1 + {t^2}}}{{1 + {t^2}}}}}} = \int {\frac{{2dt}}{{2t + 2}}} = \int {\frac{{dt}}{{t + 1}}} = \ln \left| {t + 1} \right| + C = \ln \left| {\tan \frac{x}{2} + 1} \right| + C.\], \[I = \int {\frac{{dx}}{{\sec x + 1}}} = \int {\frac{{dx}}{{\frac{1}{{\cos x}} + 1}}} = \int {\frac{{\cos xdx}}{{1 + \cos x}}} .\], \[I = \int {\frac{{\cos xdx}}{{1 + \cos x}}} = \int {\frac{{\frac{{1 - {t^2}}}{{1 + {t^2}}} \cdot \frac{{2dt}}{{1 + {t^2}}}}}{{1 + \frac{{1 - {t^2}}}{{1 + {t^2}}}}}} = 2\int {\frac{{\frac{{1 - {t^2}}}{{{{\left( {1 + {t^2}} \right)}^2}}}dt}}{{\frac{{1 + {t^2} + 1 - {t^2}}}{{1 + {t^2}}}}}} = \int {\frac{{1 - {t^2}}}{{1 + {t^2}}}dt} = - \int {\frac{{1 + {t^2} - 2}}{{1 + {t^2}}}dt} = - \int {1dt} + 2\int {\frac{{dt}}{{1 + {t^2}}}} = - t + 2\arctan t + C = - \tan \frac{x}{2} + 2\arctan \left( {\tan \frac{x}{2}} \right) + C = x - \tan \frac{x}{2} + C.\], Trigonometric and Hyperbolic Substitutions.